
Excursus 3
Cryptanalysis and the validation of deciphered texts

Cryptanalysis refers to the deciphering of a cryptogram by someone who 
does not have access to the key: a codebreaker. For example, if an enemy 
courier with an encrypted message is intercepted, an attempt may be 
made to decipher the message without access to the cryptographic key. In 
the first chapter, a simple example of cryptanalysis was provided in Fig. 
1.2, which for convenience is repeated below in Fig. E3.1. In the discussion 
of that example, we found that the absolute rate of language was 2412, 
equal to approximately 36,520 trillion. We then estimated the number of 
12-letter English words to be 20,000. The probability, then, of a serendip-
itous deciphering was determined by dividing the number of 12-letter 
English words by the absolute rate of language, and then multiplying by 
the number of potential keys, which is 23. We obtained a probability of 
one in 79 billion.

Ciphertext: Z O U M Q L D O X M E U
Key = 1: A P W N R M E P Y N F W
Key = 2: B Q X O S N F Q Z O G X
Key = 3: C R Y P T O G R A P H Y
Key = 4: D S Z Q U P H S B Q I Z
Key = 5: E T A R W Q I T C R K A

(Keys 6 through 23 are omitted)

Fig. E3.1  Cryptanalysis of Caesar shift cipher

The validation of cryptograms comes down to the following simple 
principle. There are two circumstances that could have produced the 
plaintext message: either someone actually encrypted the message using 
the key or, by some freakish chance, the plaintext serendipitously 
emerged. If one can show that the probability of the second circum-
stance—that the cryptanalytic process accidentally generated a valid 
plaintext—is sufficiently remote, then the plaintext must be the encipher-
er’s authentic and intended message. A cryptogram is validated by show-
ing that the chance of its accidental generation is essentially nil.

In the above example, the message was enciphered using a simple 
Caesar shift. This, of course, provides very little security because the key 
has a range of only 1 to 23. Your bank would never allow you to choose 
such a short key, but it might allow you to choose a 4-digit PIN, with a 
range of 0 to 9,999. We next consider a polyalphabetic cipher (discussed 
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in “The Cryptography of the Polygraphia” section of Chapter 2): we enci-
pher the 12-letter word CRYPTOGRAPHY using 4 Caesar shifts (limited 
to shifts from between 0 and 9), each applied to a group of 3 characters. If 
we arbitrarily select our PIN to be 1324, we then subtract 1 from the first 
three letters (CRY is enciphered as BQX), we then subtract 3 from the next 
three letters (PTO is enciphered as MQL), we then subtract 2 from the next 
three letters (GRA is enciphered as EPY), and finally 4 from the last three 
letters (PHY is enciphered as LDT). In all, CRYPTOGRAPHY is enciphered 
as BQXMQLEPYLDT. 

To decipher our enciphered message, we add, rather than subtract, the 
PIN. Fig. E3.2 shows the deciphering of BQXMQLEPYLDT using the PIN 
or key, 1324, which produces the plaintext CRYPTOGRAPHY (which ap-
pears in bolded letters in four different rows). An unauthorized decipher-
er (cryptanalyst or codebreaker) could crack the key by iterating through 
all 10,000 possible keys (0000 to 9999), or by iterating through a smaller 
set of possibilities based on the likelihood of the appearance of various 
trigrams (a sequence of three letters).

Ciphertext: B Q X M Q L E P Y L D T
Key = 1 C R Y N R M F Q Z M E U
Key = 2 D S Z O S N G R A N F W   
Key = 3 E T A P T O H S B O G X
Key = 4 F U B Q U P I T C P H Y

Fig. E3.2  Cryptanalysis of polyalphabetic cipher

We may now ask: what is the probability, given a 12-letter plaintext 
enciphered by a key whose range is 0 to 9,999, that an unintended plaintext 
word is generated? The key range of 10,000 is much larger than the previ-
ous example, in which it was 23. When we perform the probability calcu-
lation once again, using 10,000 instead of 23, the result is a probability of 
one in 183 million. This is more likely than the previously calculated odds 
of 1 in 79 billion, but still very improbable.

Now, let us consider the most extreme example of key range, in which 
the key consists of 12 independent numbers, with a range of 1 to 24. This 
allows any ciphertext to generate any plaintext because the range of the 
key is as large as the absolute rate of language. In Fig. E3.1, the ciphertext 
ZOUMQLDOXMEU, when deciphered using a key = 333333333333, pro-
duced the plaintext CRYPTOGRAPHY. Below, I have begun with the same 
ciphertext, ZOUMQLDOXMEU, but chosen a key to produce the plaintext 
WICKETKEEPER; indeed, I could have chosen another key and produced 
any 12-letter word that I desired.
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Ciphertext: Z O U M Q L D O X M E U
Key: 21 19 7 22 13 8 6 15 7 3 24 21 

Plaintext: W I C K E T K E E P E R

Cryptographers call this “perfect secrecy,” because no cryptanalysis is 
possible. This modern-day method is commonly used for diplomatic mes-
sages and is called “a one-time pad” (because keys are used just once). As 
a result of the key having the same amount of information (or range) as 
the message, the cipher is indecipherable, except by someone who knows 
the key.

The fundamental principle demonstrated here is that the complexity 
or length of the key must be factored into any calculation of the security 
of a cipher, or as concerns us here, of the validity of a cryptanalytic (unau-
thorized) deciphering. If the key is relatively short, as is the case with the 
simple Caesar shift shown in Fig. E3.1, then the cipher is not secure, and 
one can easily guess the key. In such situations, validation of the unauthor-
ized deciphering is immediately apparent. The coherent plaintext message 
must certainly be the intended message of the decipherer because the 
probability of it occurring by chance is extremely low (1 in 79 billion, as 
previously calculated). In contrast, if the key is long and approaches or is 
equal to the absolute range of language of the ciphertext, as in the example 
of perfect secrecy above, then any unauthorized deciphering of the mes-
sage is either impossible or unreliable. Cryptographers validate unauthor-
ized decryptions by comparing the range of the key (known as “key equiv-
ocation”) to the ratio of the absolute rate of language of the ciphertext, 
divided by the range of the plaintext. If the range of the key is signifi-
cantly smaller than the range of the absolute rate of language divided by 
the range of the plaintext, then the decryption is valid; if not, it is suspect.

In calculating the probability that a decryption is valid, we made a 
simplifying assumption for convenience: that the 12-letter message is one 
of 20,000 possible 12-letter English words. Of course, the message could 
consist of multiple words rather than a single word. Also, many of the 
20,000 12-letter words on our list are incredibly unlikely choices. Mes-
sages usually have some implicit context. For example, in the context of 
this study, the plaintext CRYPTOGRAPHY is relevant, but the plaintext 
WICKETKEEPER is not. Indeed, most words on the 12-letter word list 
that I consulted, including the first, ABANDONMENTS, and the last, 
ZYMOTECHNICS, are not relevant: this study has nothing to do with 
playing cricket, abandonments, or brewing beer. 

In order to correctly validate cryptograms, one must account for the 
use of multiple words and the relevance of the message. This can be 
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accomplished using Information Theory, a foundational theory in com-
puter science formulated by Claude Shannon (1916–2001). He recognized 
that information could be quantified and measured in logarithmic units 
(either base 2 logarithms—bits of information—or base 10 logarithms). For 
example, in a 16-letter (equiprobable61) alphabet, each letter contains 4 
bits of information because exactly 4 bits of information are required to 
represent any letter (24 = 16). The value of 4 is then taken to be the quan-
titative measure of a character’s information content. This measure of 
information is a fundamental mathematical quantity that is used in the 
analysis of cryptographic systems, and it can be used to determine wheth-
er an unauthorized deciphering of a cryptogram is valid.62

Shannon developed the means to measure how often a random se-
quence of letters would be a valid expression in a natural (human) lan-
guage such as English. He envisioned a series of steps by which random 
letters approach natural language, as shown in Fig. E3.3. The labels inside 
the trapezoid figure describe the level to which an English text is approx-
imated; the messages to the right of the trapezoid are sample texts for each 
level of approximation. At the base of the trapezoid, the letters are random. 
At the second level of the trapezoid, Shannon’s first level of approximation 
to English, he duplicated the individual letter frequencies of English. At 
the third level, Shannon increased his approximation to English by dupli-
cating trigram (3-letter group) frequencies. At the fourth level of the trap-
ezoid, only sequences of letters that are valid English words are included. 
The fifth level improves resemblance to English by mimicking English 
word order, but the text is still nonsensical. Not until the sixth level of the 
trapezoid, do we have a meaningful, grammatical English sentence. In 
climbing up each level of the trapezoid, the number of qualifying texts is 
winnowed down exponentially. Only an incredibly small percentage of the 
sequences of random letters from the first level of the trapezoid qualify as 
valid English at the sixth level of the trapezoid.

Finally, the seventh and top level of trapezoid in Fig. E3.3 adds a fur-
ther important qualification when validating a message: contextual rele-
vance. Notice that the sample text at the sixth level concerns the origin of 
the Homeric poems, a matter irrelevant to this study. In contrast, the 
sample text at the seventh level is descriptive of the chart itself. When a 
cryptogram is deciphered, one expects the deciphered text to have some 
contextual relevance. For example, if one intercepts an enemy’s military 
communications, one would not expect the subject of the message to be 
Homer. In fact, the range of texts one would expect is rather narrow, per-
haps something like “Send the armored division to Bastogne.” This con-
textual relevance is also applicable to our deciphering of the Puzzle Son-
net’s cryptogram. Any deciphered message ought to be very germane to 
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the context in which the Puzzle Sonnet is presented. This greatly narrows 
the scope of valid messages.  

Trigram frequency typical of English text

Valid language & 
contextual  relevance

Typical word ordering
but nonsensical

Valid language
(sensible, grammatical)

Letter frequency typical of English text

Random Letters

Independently chosen words
with appropriate frequency

Example text

The resemblance to valid English increases at 
each successive level of the trapezoid

Some argue that the Homeric poems developed
gradually over a long period of time

0 %
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come can different natural here he the 
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Fig. E3.3  Shannon Information: Successive approximations to English

Shannon calculated the information content at various levels of the 
trapezoid. He found that for the top level the information component of a 
natural language is approximately 25%. The remaining 75% is called “re-
dundancy.”  This means that a theoretical language that has perfect conci-
sion (i.e., fully compressed) could represent every possible message with 
only 25% of the information present in a natural language.63 This ratio of 
25% information content to 75% redundancy is a critical number because 
it allows one to answer the following essential question: what is the prob-
ability that a randomly derived string of characters is a valid text? In the 
previous examples, we used the value of 20,000, the number of 12-letter 
words, as a count of the number of possible messages. But that assumption 
is unwarranted for two reasons: it overestimates that count by including 
irrelevant and low probability words such as “wicketkeeper.” On the other 
hand, it underestimates the count by failing to allow for 12-letter phrases 
composed of multiple words. Instead, we should use a count based on 
Shannon’s estimate of the information content of English, which is 25%. 
Because “Shannon information” is measured logarithmically, 25% repre-
sents a small fraction of randomly generated texts. If we were to start with 
a trillion or 1012 possible texts at the lowest level of the trapezoid (random 
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letters), and then apply 25% to the exponent, 12, the result is 3. Then, at 
the seventh level of the Trapezoid, we would have 103 or 1,000 relevant 
English statements. In this example, only one out of a billion (one thou-
sand / one trillion) sequences of random letters qualify at the seventh 
level as relevant English messages. 

In the previous discussion of Fig. E3.2, the ciphertext BQXMQLE-
PYLDT was deciphered to CRYPTOGRAPHY using the key 1324. In the 
validation of that deciphering, the number of possible plaintext messages 
was taken to be 20,000, the number of 12-letter English words. That stan-
dard was flawed for two reasons: first, most of the 20,000 words are im-
probable (e.g., zymotechnics) and information should be measured in 
“equiprobable” events; second, the number of possible plaintext messages 
should include not only 12-letter words but multiword messages. The ap-
propriate number to use when calculating the range of possible plaintext 
messages is a value based on Shannon information. Let us apply Shannon’s 
25% number for information content to our 12-letter plaintext message. 
The result is that the number of relevant English texts is equal to 
24 (25% of 12) = 243 = 13,824. As it happens, this result is not that dissimilar 
from the earlier value of 20,000. The reason for this modest difference is 
that the two countervailing factors nearly cancel each other out: the value 
of 20,000 is too high because it is not an equiprobable wordcount; the 
value of 20,000 is too low because messages with multiple words were not 
counted. Shannon information is an essential tool because it allows us to 
estimate the number of coherent and relevant messages that may be con-
tained in a message of a given length.  

In the cryptanalytic example of Fig. E3.2, a codebreaker (an unau-
thorized decipherer) had to guess at the method (a Caesar shift every three 
characters) and the key (1324)—arbitrary assumptions. Yet, the range of 
the key (10,000) is small compared to the coherence achieved in arriving 
at the valid 12-letter plaintext message, CRYPTOGRAPHY. The probabil-
ity of a false result, after factoring in the range of the key, was calculated 
to be extremely small: 1 in 183 million (performed with the earlier esti-
mate of 20,000 valid plaintexts). Thus, in the course of solving a crypto-
graphic puzzle, one should tally the arbitrary assumptions that are made. 
Then, at the conclusion of the puzzle, when the solution is in hand, its 
validity can be measured by comparing the order or coherence of the solu-
tion to the range of the arbitrary assumptions made in arriving at the solu-
tion. In the case of the plaintext message CRYPTOGRPAHY, there is a high 
level of order because there are only 20,000 valid plaintexts as compared 
to 36,520 trillion random sequences of 12 letters, a ratio of one in 1.8 tril-
lion. Now this must be compared to the range of arbitrary assumptions 
made in arriving at the solution. That range is the number of key values 



Excursus 3   341 

that may be considered, which is the number of four-digit PINs, equal to 
10,000. This number is small compared to 1.8 trillion, and this assures the 
cryptanalyst that the deciphered message, CRYPTOGRAPHY, is valid. 

In the process of cryptanalysis, the codebreaker makes many specula-
tions, some based on a hunch and others quite arbitrary. As in navigating 
a labyrinth, the validity of choices is not known when they are made, but 
only after validation is confirmed at the end of the process. In the course 
of using cryptanalysis to decipher a presumptive plaintext message, the 
range (or information content) of the arbitrary decisions undertaken may 
be tallied and later compared against the likelihood of a valid message 
arising out of chance. With too much range in the key (as in perfect se-
crecy) or other arbitrary assumptions, no validation is possible. If the in-
formation content or range of the key is reasonably low, then the decipher-
ing is valid.
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